Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha para que o resultado da computação seja exibido onde ele deve gostar do seguinte. Adicionar uma tendência ou linha média móvel a um gráfico Aplica-se a: Excel 2017 Word 2017 PowerPoint 2017 Excel 2017 Word 2017 Outlook 2017 PowerPoint 2017 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode estender uma linha de tendência além de seus dados reais para ajudar a prever valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para as vendas futuras. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um gráfico empilhado, 3-D, radar, torta, superfície ou donut. Adicionar uma linha de tendência No gráfico, clique na série de dados à qual pretende adicionar uma linha de tendência ou uma média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Marque a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E clique em Exponencial. Previsão Linear. Ou média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se escolher Mais opções. Clique na opção desejada no painel Formato da linha de tendência em Opções da linha de tendência. Se você selecionar Polynomial. Digite a potência mais alta para a variável independente na caixa Ordem. Se você selecionar Média em Movimento. Digite o número de períodos a serem usados para calcular a média móvel na caixa Período. Dica: Uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela o quanto os valores estimados para a linha de tendência correspondem aos seus dados reais) está em ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o seu valor R-quadrado. Você pode exibir esse valor em seu gráfico, marcando o valor Exibir valor R-quadrado na caixa de gráfico (painel Formato Trendline, opções de linha de tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linhas de tendência linear Use este tipo de linha de tendência para criar uma linha reta com o melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se parecer com uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa essa equação para calcular o ajuste de mínimos quadrados para uma linha: onde m é a inclinação eb é a interceptação. A seguinte linha de tendência linear mostra que as vendas de geladeiras têm aumentado consistentemente ao longo de um período de 8 anos. Observe que o valor R-squared (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos seus dados reais) é 0.9792, que é um bom ajuste da linha aos dados. Mostrando uma linha curva melhor ajustada, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Essa linha de tendência é útil quando os dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Tipicamente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde b e são constantes. A seguinte linha de tendência polinomial da Ordem 2 (uma colina) mostra a relação entre a velocidade de condução eo consumo de combustível. Observe que o valor R-quadrado é 0,979, que é próximo a 1, portanto, as linhas um bom ajuste para os dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou zero. O gráfico de medidas de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores dos dados sobem ou descem em taxas constantemente crescentes. Não é possível criar uma linha de tendência exponencial se os dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes ee é a base do logaritmo natural. A linha de tendência exponencial seguinte mostra a quantidade decrescente de carbono 14 num objecto à medida que envelhece. Observe que o valor R-quadrado é 0,990, o que significa que a linha se encaixa perfeitamente os dados. Moving Average trendline Esta linha de tendência evens out flutuações em dados para mostrar um padrão ou tendência mais claramente. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha. Por exemplo, se Period for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. Uma linha de tendência de média móvel usa esta equação: O número de pontos em uma linha de tendência de média móvel é igual ao número total de pontos na série menos o Número que você especificar para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores de x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas.
No comments:
Post a Comment